Chemical evolution during the formation of a protoplanetary disk A. Coutens (LAB), B. Commerçon (CRAL) & V. Wakelam (LAB)

QUESTIONS

- * How does the chemical content evolve during the star formation process ?
- * What is the chemical composition of protoplanetary disks (in which planets are expected to form) ?
- * Does the disk inherit the chemical composition of the cold and dense core or does the physical changes during the collapse play a major role on the disk composition ?

METHODS

Chemical modeling

* 3-phase chemistry code NAUTILUS

* Chemical network :

- 589 gas phase species
- 540 grain species
- 13,384 reactions

Initial abundances

- * 2 sets of initial abundances (A and B) that correspond to 2 cold cores with different history
- * SPH simulations of dense core formation (Ruaud et al. 2018)
- * Different reservoirs for O, C, N, S, Si, and P

Physical modeling

- * 3D dense core collapse magnetohydrodynamic (MHD) calculations with the RAMSES code (adaptative-mesh refinement)
- * 10⁶ initial particles
- **米** M = 1 M_☉
- * Resistive MHD

Chemical evolution during the formation of a protoplanetary disk

A. Coutens (LAB), B. Commerçon (CRAL) & V. Wakelam (LAB)

RESULTS* 15,000 particles end in the disk at the final time of the simulations (5.8 x 10⁴ yrs)* First hydrostatic core stage = 5.0 x 10⁴ yrs

1. Spatial distribution

- * Different spatial distribution according to the species
- * Sensitivity of molecules to temperature and density distribution
- * Same spatial distributions for different initial abundances (except for HCO, HNO, OH, SO, SO₂, CH₃)
- * Similar distribution for water and complex organic molecules (COMs)

Chemical evolution during the formation of a protoplanetary disk

A. Coutens (LAB), B. Commerçon (CRAL) & V. Wakelam (LAB)

2. Final reservoirs

* The main carriers of the chemical elements in the disk are usually the same ones as in the cold core

* No change for N, Si, Cl, F

* For O and C, the contributions of HCO and CH_2OH decrease significantly (cloud B)

* For S, H₂S₃ becomes a major carrier instead of HS (clouds A and B)

* For P, the contributions of PO, HCP, and CP increase (cloud B)

* Even if the reservoirs are similar, important changes are seen for less abundant species

Element	Main reservoir, Case A	Main reservoir, Case B
0	H ₂ O (91%)	H ₂ O (49%), H ₂ CO (9%), CH ₃ OH (7%), HCOOH (2
		× 6%)
С	HCN (28%), CH ₄ (15%), CH ₃ OH (7%), C ₃ H ₈ (3 ×	H ₂ CO (16%), CH ₃ OH (13%), CH ₄ (12%), HCOOH
	5%)	(12%), CO (7%), CO ₂ (6%)
N	HCN (81%), NH ₃ (6%), N ₂ ($2 \times 6\%$)	NH ₃ (58%), NH ₂ CH ₂ OH (10%), N ₂ (2 × 7%), HCN
		(5%)
S	H_2S (35%), CH_3SH (11%), H_2S_3 (3 × 10%), CH_3S	H_2S (30%), H_2S_3 (3 × 11%), OCS (7%), NS (7%)
	(5%)	•
Si	SiH ₄ (44%), SiC ₈ H (16%), SiC ₆ H (8%), SiC ₄ H	SiC ₄ H (27%), SiO (21%), SiH ₄ (18%), SiC ₆ H (7%)
	(7%), HCSi (5%)	
Р	P (80%), CP (11%), HCP (7%)	P (40%), PO (26%), PN (14%), HCP (10%), CP
		(9%)
Cl	HCl (100%)	HC1 (99%)
F	HF (100%)	HF (100%)

Chemical evolution during the formation of a protoplanetary disk A. Coutens (LAB), B. Commerçon (CRAL) & V. Wakelam (LAB)

3. Chemical evolution

* Classification of more than 70 species according to their sensitivity to the initial abundances

